
Complementary algorithms for graphs and percolation

Michael J. Lee
Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand

�Received 15 January 2007; revised manuscript received 3 May 2007; published 27 August 2007�

A pair of complementary algorithms are presented. One of the pair is a fast method for connecting graphs
with an edge. The other is a fast method for removing edges from a graph. Both algorithms employ the same
tree-based graph representation and so, in concert, can arbitrarily modify any graph. Since the clusters of a
percolation model may be described as simple connected graphs, an efficient Monte Carlo scheme can be
constructed which uses the algorithms to sweep the occupation probability back and forth between two turning
points. This approach concentrates computational sampling time within a region of interest. A high-precision
value of pc=0.592 746 03�9� was thus obtained, by Mersenne twister, for the two-dimensional square site
percolation threshold.

DOI: 10.1103/PhysRevE.76.027702 PACS number�s�: 02.70.�c, 02.10.Ox, 05.10.Ln, 64.60.Ak

The various percolation models are well-studied topologi-
cal problems of statistical physics. Beyond an intrinsic fun-
damental mathematical importance, percolation theory
boasts a number of diverse applications in areas such as en-
vironmental science, biology, geology, chemistry, engineer-
ing, physics, and cosmology �1–3�.

Contemporary Monte Carlo studies of percolation typi-
cally require that large numbers of samples be taken from
within the critical region of the phase transition. In order to
take these samples a method such as that of Gould and To-
bochnik �2�, Machta, Choi, Lucke, Schweizer and Chayes
�4,5�, or Newman and Ziff �6,7� is often employed. These
schemes all begin with an empty lattice and proceed to oc-
cupy individual sites �or bonds�, one by one, until a spanning
cluster exists. A high rate of sampling is achievable, but the
majority of the data thus acquired are sourced from lattice
configurations that lie outside the critical region. Such unde-
sirable sampling is manifest as a serious computational inef-
ficiency that would be better avoided.

Here a method is introduced that allows for individual
sites �or bonds� to be switched back and forth between the
occupied and unoccupied states. This enables the lattice to
take a random walk through configurations that dwell en-
tirely within the region of interest. Consequently a higher
proportion �potentially all� of the sampled data usefully con-
tributes to the final result.

This method relies upon two efficient algorithms for per-
forming operations upon graphs. The first algorithm adds
edges to graphs and graphs together. The second algorithm
removes edges from graphs and splits graphs apart. The
scope of these algorithms is much more general than merely
percolation. The two algorithms share a common tree-based
representation for graphs, which enables them to work effi-
ciently with the same data structures; easily inserting and
deleting both edges and vertices. While they are both appli-
cable to general directed graphs, only simply connected un-
directed graphs will be considered here.

Connected graphs are represented by trees of vertex ob-
jects and graph objects �see Fig. 1�. Vertex objects represent
vertices; graph objects serve as a dynamic Hoshen-
Kopelman relabeling table �1,8� for the vertex objects and
also maintain statistics �such as order� for the graph. Each
vertex object contains a pointer to the graph object of which

it is a child. Likewise, each graph object contains a pointer to
some other graph object of which it is a child. Trees are
constructed in such a way that for each tree there always
exists one, and only one, graph object which is not the child
of any other object and which has no pointer. This unique
object is designated as the root of the tree. Vertex objects are
always leaves of the tree; graph objects never are. All vertex
objects within a given tree are members of the same graph.
However, it is not true, other than for the root, that the set of
all vertex objects belonging to the subtree below a given
graph object correspond to the vertices of a connected sub-
graph.

The simplest possible graph consists of a single vertex
and no edges. To represent such a graph, a graph object is
created without a pointer, and a vertex object is created with
its pointer directed at the graph object. More complex graphs
arise when the vertices of these simplest graphs become con-
nected by edges. Vertex objects carry �additional� pointers to
any other vertex objects to which they are adjacent, and these
pointers represent directed edges. Undirected edges are rep-
resented by pairs of directed edges. Edges are inserted into
�or removed from� a graph simply by creating �or destroying�
the corresponding pointers.

FIG. 1. The left-hand tree of graph objects � and vertex objects
� represents a graph. Data upon each graph object track the total
number of vertex objects below. From the vertex object marked �,
the root is found by a recursive algorithm which follows pointers to
the root and turns every object along the way into a child of the
root. The result is the right-hand tree, which is a simpler represen-
tation of the same graph. The graph object that was a child of the
root in the left-hand structure has been pruned from the tree.

PHYSICAL REVIEW E 76, 027702 �2007�

1539-3755/2007/76�2�/027702�4� ©2007 The American Physical Society027702-1

http://dx.doi.org/10.1103/PhysRevE.76.027702


When two vertices from two different graphs become
connected by an edge, the two graphs must be fused into a
single graph. This is achieved by creating a pointer to the
root of the greater order graph, upon the root of the lesser
order graph, thereby making the lesser graph’s root a child of
the greater graph’s root and the lesser graph’s tree a subtree
of the greater graph’s tree. Statistics upon the one remaining
root are incremented by those on the former root, so that the
data upon the remaining root correctly reflect the properties
of the new graph. The result is a single tree with a unique
root.

In order to perform this operation, it is necessary to locate
the root of each graph tree. For every vertex object within the
tree, there exists a sequence of graph objects ending with the
root. For every object within the sequence, the pointer upon
that object uniquely specifies the next object in the sequence.
Starting with a vertex object, the sequence is found by trac-
ing pointers from child to parent until the root is reached.

A path compression technique is applied throughout the
tracing process by redirecting the pointer of every object in
the sequence �other than the root� to the location of the root.
In this way, all objects in the sequence are made children of
the root, and future tracing operations from those objects will
find the root after following only a single pointer. This af-
fords a significant improvement in computational efficiency
�6,7�. To maintain correct statistics upon each graph object,
relevant information is transferred from child to parent on
every step of the tracing. After path compression, some
graph objects from the sequence may have no children.
These redundant objects are pruned from the tree and deleted
from memory during the tracing process. The complete root
finding process is shown in Fig. 1.

An edge may be removed from between two vertices by
deleting the appropriate pointers from the corresponding ver-
tex objects. A vertex may be removed from a graph by re-
moving all of the edges about that vertex �the associated
vertex object may then be deleted�. Such operations may
cause the original graph to fragment into a set of smaller
graphs. The deterministic accretion algorithm which effi-
ciently identifies these fragments is similar to the stochastic
methods of Hammersley and Handscomb �9�, Leath �10�,
and Alexandrowicz �11�, where sites and bonds are added to
the perimeter of an existing percolation cluster.

Each surviving vertex that has had one or more of its
edges removed is assigned to a distinct clump. A clump is
merely a label held in common by a set of vertices that are
all known to belong to the same fragment graph. Each such
labeled vertex forms a separate nucleation kernel for an ac-
cretion process which constructs the fragment graphs from
the remains of the original. From each labeled vertex, all
edges are followed outward to what must be an adjacent
vertex, and these are assigned to the same clump as the la-
beled vertex. As vertices are added to the perimeter of a
clump, they are placed in a queue to be later examined for
adjacent vertices that also need to be added to the clump.
This breadth-first process is performed in parallel for all
clumps, and was found to be significantly faster than depth-
first accretion.

When two adjacent vertices are found to belong to differ-
ent clumps, those two clumps are merged into one. When a

clump contains no vertex that is adjacent to any other vertex
that is not a member of the same clump, then that clump has
stopped growing and must represent a complete connected
fragment graph. All vertex objects associated with the clump
are then extracted from the original graph tree and are made
children of a newly created �root� graph object. Parameters
for the fragment graph are calculated upon the root object,
and the clump ceases to be.

When the number of distinct clumps remaining drops to 1,
whatever remains of the original graph tree must logically
represent the final fragment graph. It is not necessary to con-
tinue with the accretion process, the original graph tree is left
as is, and the algorithm is complete. As shown in Fig. 2 the
algorithm requires only enough time to establish the second
largest fragment graph, rather than the largest, and the saving
is often substantial.

Clump labeling is achieved by the use of clump objects to
which vertex objects may or may not have pointers, exactly
as in the graph trees. The same pointer method is used to
merge clumps as is used to fuse graphs. The same path com-
pressing pointer tracing process is used to find clump labels
�clump tree root objects� as is used to find graph tree roots.
Use of clump objects permits the isolation of fragment
graphs without altering the original graph tree data structure.
Since clumps are transient structures, statistics other than
order need not be calculated for them.

It is possible to establish the fragment graphs without us-
ing clumps or clump objects. Instead of giving vertices tem-
porary clump labels, associated objects may be extracted di-
rectly into new graph trees. These trees may later be fused
back together during the accretion process. However, this
requires additional work in extracting vertex objects from the
original graph tree and in calculating graph statistics. A sig-
nificant performance difference was found in favor of using
the clump approach.

Vertices can represent the binary state sites of a percola-
tion model. Graphs become equivalent to clusters of occu-
pied sites simply connected by occupied bonds. Unoccupied
sites have neither graph object nor clump object pointers
upon their corresponding vertex objects, and are not mem-
bers of any graph or clump. An occupied site belongs to a
cluster uniquely identified by the root of the graph tree to
which the corresponding vertex object belongs. Bonds may
be occupied or unoccupied by switching edge pointers on
and off upon the sites. The algorithm presented here for join-

FIG. 2. Accretion algorithm. Nucleation: vertex a and surround-
ing edges are removed; b, c, and d are assigned to distinct clumps.
Sweep 1: e assigned to clump of b; f and g assigned to clump of c;
clumps of g and d merged. Sweep 2: clump of e complete and so
extracted to a graph; one clump remains and hence all other vertices
belong to the final fragment.

BRIEF REPORTS PHYSICAL REVIEW E 76, 027702 �2007�

027702-2



ing two graphs becomes similar to the site-to-site pointer tree
method of Newman and Ziff �6,7�. It is not entirely equiva-
lent, since it is impractical to do away with the graph objects
while still retaining the edge and vertex removal component
of the method.

Consider a site percolation model upon a fixed lattice of N
sites. The pair of algorithms presented here confer the ability
to arbitrarily raise and lower the number of occupied sites n
upon the lattice while efficiently maintaining the correct
cluster information and associated statistics. The algorithms
may be forged into a Monte Carlo scheme which sweeps n
back and forth between two turning conditions. Within this
scheme, a Monte Carlo step consists of either the occupation
of a randomly chosen unoccupied site, or the deoccupation
of a randomly chosen occupied site. Initially, n is stepped
upward until the upper turning condition is satisfied, and
then n is stepped downward until the lower turning condition
is met. This cyclical process may be repeated indefinitely.
This �bidirectional sweeping� approach is a generalization of
the single stopping condition �and implicit starting condition
at n=0� found in the �unidirectional sweeping� algorithms of
Machta et al. �4,5� and of Newman and Ziff �6,7�. While this
method is conceptually simple, its computational perfor-
mance depends strongly upon the details of how the Monte
Carlo steps are realized. The intention of the complementary
graph algorithms described here is to achieve these steps in
as little time as possible.

The turning conditions might be a change in the order
parameter of the system. The occupation n can be increased
until a spanning cluster exists, and then decreased until a
spanning cluster no longer remains. The result is a self-
organized critical random walk through lattice configurations
which are all only a single Monte Carlo step away from the
phase change. Such an approach hints at that of Tomita and
Okabe �12�, where the current measured value of some order
parameter determines a change in bond density.

In order to measure the square site percolation threshold
pc upon an N=L�L lattice, an unbiased Monte Carlo esti-
mator of the spanning probabilities RL�p� �13,14� is useful.
The occupation probability p=n /N. To provide this unbiased
estimate, the turning conditions are taken to be two fixed
values of n, so that all configurations of a given n are visited
with equal probability. Since knowledge of RL�p� is required
only about the critical point, the turning points are chosen
such that the sampling range includes this region.

Here lies an advantage over earlier unidirectional sweep-
ing algorithms which return information for all n from zero
to the phase transition, a range of O�N� steps. The critical
region spans a smaller range of only O�NL−1/�� steps �1�. In
two dimensions the correlation length exponent �=4/3 �1,2�
and so the range is O�N5/8�. Restricting the sampling range to
the critical region significantly reduces the fraction of
samples that make no contribution to the final result. While
the method presented here does not require any a priori
knowledge, it is able to make use of any information that
does exist. The performance and sampling range may be ad-
justed accordingly.

Estimating RL�p� requires knowing of the existence, or
otherwise, of lattice spanning clusters. An efficient means for

tracking this information is integrated into the tracing pro-
cess of Fig. 1. Each vertex object carries data indicating on
which boundaries of the lattice the associated site lies. When
a site becomes occupied, these data are transferred to the root
graph object where a running total is kept for all sites within
the associated cluster. It is then straightforward to determine
which dimensions of the lattice are spanned by this cluster,
and that information is in turn sent from the root object to a
master array for the entire lattice. This array is updated
whenever a cluster is modified, so that at any given instant
the precise number of clusters spanning any given combina-
tion of lattice dimensions is known.

Define sd�n� as the number of occasions on which the
lattice is found to be in a configuration at occupation level n
within which there exists a cluster that spans the lattice
across d, or more, dimensions. Consequently, s0�n� is the
total number of observations made at occupation level n and,
in two dimensions, s2�n� is the number of those observations
in which a single cluster spans across the entire lattice in
both dimensions. The number of observations in which a
cluster spans one, and only one, �unspecified� spatial dimen-
sion is given by s1�n�−s2�n�. After making numerous obser-
vations, the probability that the lattice will be spanned over a
given �specified� spatial dimension by a randomly generated
configuration at occupation level n is estimated by

RL�n/N� =
s1�n� + s2�n�

2s0�n�
.

It has been shown �13,14� that for large L the spanning
probability at the critical point is given by

RL�pc� � 0.5 + b/L .

Ziff and Newman have found that b=0.320�1� �15�. Working
on a lattice of L=2048 �N=4 194 304�, it follows that b /L
=0.000 156 25�50�.

Calculations were performed to make estimates of RL�p�.
Two sampling ranges were used; the entire critical region,
2 474 000�n�2 498 000, and a small neighborhood about
the critical point, 2 485 700�n�2 486 700. In both cases
the decorrelation time was found to be on the order of 5
�104 steps. This compares favorably with the 2.5�106

steps required to take a sample by unidirectional methods
from an initially empty lattice.

Preliminary trials were conducted with a decimated
Mitchell and Moore additive lagged Fibonacci generator
with taps at 418 and 1279 �16�. Results were consistent be-
tween using a single such generator and using an indepen-
dently seeded pair to obtain x-y site coordinates from only
the most significant bits of each. A combined total of 3
�109 range sweeps yielded an estimate of pc
=0.592 746 63�24�.

High-precision measurements were conducted with Mat-
sumoto and Nishimura’s Mersenne twister generator MT19937

�17�. Results were consistent between using a single genera-
tor and using a decimated independent x-y pair. A total
of 2�1010 range sweeps produced the esti-
mates RL�2 486 156/N�=0.500 097�22�, RL�2 486 157/N�

BRIEF REPORTS PHYSICAL REVIEW E 76, 027702 �2007�

027702-3



=0.500 153�22�, and RL�2 486 158/N�=0.500 209�22�, as
shown in Fig. 3.

It follows that the best estimate for the square site perco-
lation threshold is pc=0.592 746 03�9�, a measurement of
significantly greater precision than earlier results �6,13,18�
�see also Ref. 19 of �6��, and which should assist with future
studies of the model. Note that this value is based purely

upon the Mersenne twister calculations and differs from the
lagged Fibonacci estimate. At this level of precision, the
choice of pseudorandom number generator is clearly of great
importance.

In summary, efficient deterministic algorithms have been
presented for the manipulation of graphs. These are poten-
tially useful in topological problems such as the analysis of
networks and perturbative expansions in diagram formal-
isms. It has been shown how they form the basis of an effi-
cient Monte Carlo method which walks a system through
every point within a chosen range and, crucially, only those
points. By exclusively sampling from pertinent system con-
figurations, improved computational efficiency is achieved.
Greater quantities of useful data can be acquired than with
other techniques, and the result is an increased precision of
measurement. The method was used to achieve the most pre-
cise estimate to date of the square site percolation threshold
and is applicable to a wide variety of numerical experiments
on any discretized space of arbitrary connectivity.

Acknowledgements are due to O. K. L. Petterson and C.
J. McMurtrie for the provision of computing resources, and
to R. M. Ziff for useful information and suggestions. Ele-
ments of this work were conducted upon the University of
Canterbury Supercomputer.

�1� D. Stauffer and A. Aharony, Introduction to Percolation
Theory, revised 2nd ed. �Taylor and Francis, London, 1994�.

�2� H. Gould and J. Tobochnik, An Introduction to Computer
Simulation Methods, 2nd ed. �Addison-Wesley, Reading, MA,
1996�.

�3� Nearby Large Scale Structures and the Zone of Avoidance,
edited by A. P. Fairall and P. A. Woudt �Astronomical Society
of the Pacific, Provo, UT, 2005�.

�4� J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. V.
Chayes, Phys. Rev. Lett. 75, 2792 �1995�.

�5� J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. M.
Chayes, Phys. Rev. E 54, 1332 �1996�.

�6� M. E. J. Newman and R. M. Ziff, Phys. Rev. Lett. 85, 4104
�2000�.

�7� M. E. J. Newman and R. M. Ziff, Phys. Rev. E 64, 016706
�2001�.

�8� J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 �1976�.

�9� J. M. Hammersley and D. C. Handscomb, Monte Carlo Meth-
ods �Methuen, London, 1964�.

�10� P. L. Leath, Phys. Rev. B 14, 5046 �1976�.
�11� Z. Alexandrowicz, Phys. Lett. 80, 284 �1980�.
�12� Y. Tomita and Y. Okabe, Phys. Rev. Lett. 86, 572 �2001�.
�13� R. M. Ziff, Phys. Rev. Lett. 69, 2670 �1992�.
�14� P. J. Reynolds, H. E. Stanley, and W. Klein, Phys. Rev. B 21,

1223 �1980�.
�15� R. M. Ziff and M. E. J. Newman, Phys. Rev. E 66, 016129

�2002�.
�16� D. E. Knuth, The Art of Computer Programming, Volume 2:

Seminumerical Algorithms, 2nd ed. �Addison-Wesley, Read-
ing, MA, 1981�.

�17� M. Matsumoto and T. Nishimura, ACM Trans. Model. Com-
put. Simul. 8, 3 �1998�.

�18� Y. Deng and H. W. J. Blöte, Phys. Rev. E 72, 016126 �2005�.

FIG. 3. Combined Mersenne-twister-based Monte Carlo esti-
mates for the probability of the existence of a cluster spanning a
single specified lattice dimension of a square site percolation model
with N=20482 sites. Solid lines are the error bounds for RL�p�, the
dashed line is RL�pc�.

BRIEF REPORTS PHYSICAL REVIEW E 76, 027702 �2007�

027702-4


